Solid Oxide Fuel Cell Technology for Hybrid Power Generation

Nguyen Minh

GE Hybrid Power Generation Systems

SOFC Hybrid System Concept

Simplified SOFC System & Components

Key System Components

- SOFC
 - High-performance reduced-temperature planar cells
- Microturbine
 - Commercial systems
- Other subsystems
 - Fuel processor
 - Thermal management
 - Flexible control subsystem

- System features
 - High efficiency
 - Low cost
 - Low emissions and low noise
- Planar SOFC technology for hybrid power generation
 - High power density
 - Reduced cost

SOFC Stack Configurations

- Thin film electrolytes
- Thin foil metallic interconnects
- Gas manifold options
- Gas flow configuration flexibility

Crossflow Design

Radial Flow Design

Unitized Cell Design

Cell Fabrication

Green Thin Electrolyte/Anode Bilayer Tape

High-Performance Anode-Supported SOFC

Low Cost Manufacturing Process

 Fabrication process with tape calendering RAW MIXER

MIXER

FINAL CELL

FIRING

STACK

METAL
FORMING

FORMING

FORMING

FORMING

FORMING

FORMING

FINAL CELL

FIRING

METAL
FORMING

FM03068.ps

Multilayer electronics fabrication process

SOFC Cell Performance

- 800°C operation
- Peak power density:
 - 1.3 W/cm² in hydrogen
 - 0.85 W/cm² in syngas

SOFC Cell Performance at Reduced Temperatures

• High power densities (e.g., 0.9 W/cm² at 650°C) achieved at reduced temperatures (<800°C) with anode-supported thin-electrolyte cells

SOFC Stack Performance

- 10 cm x 10 cm footprint
- 800°C operation in hydrogen and air at ambient pressure
- Power:
 - 1.1 kW at 0.7 V / cell
 - 1.4 kW at peak power
- Power density:
 - 0.42 W/cm2 at 0.7 V/cell
 - 0.6 W / cm² at peak power
 - 0.7 kW / kg, 0.7 kW / L at peak power
 - 0.53 kW / kg, 0.53 kW / L at 0.7 V/cell

Stack Thermal Cycling

- Multiple thermal cycles without significant performance degradation
- Minimal change in open circuit voltage and voltage under load between cycles

SOFC Performance Enhancement with Pressure

- Cell performance is enhanced with pressurized operation thermodynamically and kinetically
 - Increase in Nernst potential
 - Decrease in activation polarization
 - Exchange current density
 - Decrease in concentration polarization
 - Limiting current density

Nernst Potential Increases with Pressure

Electrode Kinetics Enhanced with Pressure

Pressure will benefit electrode kinetics through increase in both exchange current density and limiting current density

Exchange Current Density i

Electrode Limiting Current Density i_a

$$P_{H_2} \uparrow \square \rightarrow i_0 \uparrow i_a \uparrow$$

SOFC Performance Projection

- •Significant performance enhancement observed from 1 to 3 atm
- •Moderate performance improvement expected from 4 to 10 atm

Pressurized SOFC Performance

Concluding Remarks

- Planar SOFC technology for hybrid power generation over a broad range of system sizes
- Planar SOFCs based on thin-electrolyte anode supported cells
 - Simple, low-cost tape calendering fabrication process
 - High power density
 - Pressurized operation

